
Week 11 - Monday

 What did we talk about last time?
 Exam 2!
 Before that: review
 Before that:
 Deployment and maintenance

 As you probably can tell from working on Project 3, it's important
for software managers to:
 Divide the development into tasks
 Estimate how long those tasks will take

 Otherwise, it's impossible to plan:
 How long a development project will take
 How much it will cost

 This information is central to traditional, waterfall processes
 Even in agile, we need to decide on sprintable stories for a sprint

 High level tasks are pretty easy to identify
 "Add networking support"

 But that level of detail isn't very useful
 Tasks are either:
 Non-decomposable, also called actions
 Decomposable, also called activities or processes

 The right level of detail is called a work package
 A work package is a task that is small enough and detailed enough to

estimate

 A work breakdown structure (WBS) can be used to map out
tasks at the right level of abstraction
 The book prefers hierarchy diagrams to represent a WBS, since they

balance the readability of trees with the space efficiency of
hierarchical lists

 Nodes in a WBS are work to be done
 The root of a WBS is the project name
 The first level is all the deliverables for a project
 Each level below represents more and more detailed work
 Leaf nodes are work packages

 The hierarchy diagram to the right
shows a WBS for a home security
product

 Note that different strategies can
be used to decompose the work,
especially at different levels:
 Project deliverables
 Product features or services
 Project phases
 Organizational units
 Physical product decomposition
 Logical product decomposition
 Geographical location of team

members

 But how do you know if you've done a good job breaking things down?
 One hundred percent rule: Nodes descended from a parent represent

100% of the work of the parent
 Nothing's left out
 No work is from outside the project

 Mutually exclusive siblings: No sibling nodes have overlapping work
 8 / 80 rule: Work packages (the leaves) take between 8 and 80 person-

hours of effort
 Work in that range (one day to two weeks) can be estimated reasonably well

 Get your project team and stakeholders together and make your WBS on
a whiteboard

 In traditional processes, effort estimation can be done in a few
ways:
 Analogy: Is your project like another project? It should take about the

same effort
▪ Problem: Only works if your project is very similar to another project

 WBS to effort: Estimate the effort for each work package in a WBS and
add them up
▪ Problem: It's really hard to estimate effort accurately

 Size to effort: Estimate the size of the final software product and use
some math to predict how much work it will take to make the product
▪ Problem: Oh, so many problems, which we'll discuss

 Functional measures of size have to do with how much
functionality the program provides
 Number of pages on a website
 Number of reports in a database
 Number of windows in a GUI

 Non-functional measures of size are based on the program's
structure
 Lines of code
 Number of classes

 Non-functional measures are easy to measure after development
but hard to predict ahead of time

 Lines of code (LOC) is a count of the lines of code needed for a project
 LOC is the most popular non-functional measure of size

 Some people prefer source lines of code (SLOC), ignoring whitespace (and perhaps
comments)
 It's even possible to weight some lines
 LOC is only meaningful in context, since some programming languages tend to take more LOC

to get the same job done
 Estimating LOC is done by breaking the product design into smaller and smaller

components until the size of each component can be estimated
 Accuracy is hard to achieve early on, since there isn't even a design yet

"Measuring programming progress by lines of code is
like measuring aircraft building progress by weight."

-Bill Gates

 Alternatively, a functional measure of size is possible called function points
 Function points are calculated by looking at five different types of components,

organized into two categories:
 Processes or Transactions
 External Inputs (EI): Processes that provide data that will be used or stored by the

product
 External Queries (EQ): Processes that retrieve stored data
 External Outputs (EO): Processes that provide derived information to a user

(performing calculations)
 Data Storage
 Internal Logical Files (ILF): Groupings of data maintained by the product
 External Interface Files (EIF): Groupings of data external to the product but used by the

product

 Components of each kind contribute different amounts of effort
 Likewise, there are simple, average, or complex cases
 To account for these differences, we give a weight to each

component based on this table

Measure Simple Average Complex

External Inputs 3 4 6

External Queries 3 4 6

External Outputs 4 5 7

Internal Logical Files 7 10 15

External Interface Files 5 7 10

 It gets worse!
 The whole number of function points is further weighted by answering each of the following 14 questions with

a number between 0 (meaning not important) to 5 (meaning essential)
1. Does the system require reliable backup and recovery?
2. Are specialized data communications required?
3. Are there distributed processing functions?
4. Is performance critical?
5. Will the system run in an existing, heavily utilized operational environment?
6. Does the system require on-line data entry?
7. Does the on-line data entry require input transactions over multiple screens or operations?
8. Are the ILFs updated on-line?
9. Are the inputs, outputs, files or inquiries complex?
10. Is the internal processing complex?
11. Is the code to be designed to be reusable?
12. Are conversion and installation included in the design?
13. Is the system designed for multiple installations in different organizations?
14. Is the application designed to facilitate change and ease of use by the user?

 The final number of function points is 𝐹𝐹 = �
𝑚𝑚=1

5

�
𝑑𝑑=1

3

𝑀𝑀𝑚𝑚𝑑𝑑 � 𝑊𝑊𝑚𝑚𝑑𝑑 � 0.65 + 0.01 � �
𝑞𝑞=1

14

𝑉𝑉𝑞𝑞

 The Common Software Measurement International Consortium (COSMIC) proposed
counting data movements
 Moving data from or to users or from or to storage

 Roetzheim tweaked function points for web apps
 EI corresponds to input screens or forms
 EQ corresponds to externally published interfaces
 EO corresponds to HTML pages
 ILF corresponds to internal database tables or XML files
 ELF corresponds to external database tables or XML files

 Boehm suggests object points instead of function points
 Three measures: screens in the interface, reports, and modules
 Each measure is simple, medium, or difficult (weighted appropriately)
 Object points are the sum of weighted measures multiplied by how much reuse there is

(between 0 and 1)

 All these estimates of size give us some arbitrary number, but
how much effort is needed?

 Algorithmic cost models try to turn size estimates into a
measure of effort called the person-month
 The amount of effort a normal developer does in one month
 Each person month has about 22 person-days
 Effort covers all work from requirements, design, coding, testing,

documentation, collecting data, management, and so on

 Maybe work grows linearly with function points
 Two different studies tried to model this to estimate effort 𝐸𝐸 = 𝛼𝛼 + 𝛽𝛽𝐹𝐹
 They found the following:

 These results are frustrating
 The first one suggests that each function point adds ¼ person-month of work
 The second suggests each function point adds about 1 person-month of work

 They were looking at different organizations and different accounting of function points,
so estimates might work well only within an organization that is consistent about such
things

Study α β

Albrecht and Gafney -91.4 0.255

Kemerer -37.0 0.960

 Alternatively, some researchers have looked at exponential models relating thousands of
lines of source code (KLOC) to total effort using the following equation, where L is KLOC:
 𝐸𝐸 = 𝛼𝛼 � 𝐿𝐿𝛽𝛽

 Results found the following values of α and β:

 Note here that β < 1 means economies of scale (time per line of code decreases at the
project grows) while β > 1 means the opposite

Study α β

Watson and Felix 5.20 0.91

Basili and Freburger 1.38 0.93

Boehm 3.20 1.05

 The book goes into the Constructive Cost Model (COCOMO) and
its successor COCOMO II
 It uses some measure (either KLOC or function points)
 It tweaks an economy of scale parameter based on factors like how similar

the project is to previous results and team cohesion
 It tweaks effort modifiers based on characteristics of the product,

platform, team, and language
 If it's not clear to you, we as an industry have no idea how to

estimate effort
 Your effort estimates are probably only meaningful if you can

compare the product to a similar product made by a similar team

 Everything we said before was about waterfall estimates
 Scrum skips size estimates and goes straight for effort estimates
 As you know, units of effort in Scrum are called story points (or sometimes task

points)
 Story points are relative units
 They're based on some of the smallest tasks, using them as a baseline of 1 story point
 Everything is estimated relative to those

 Story points aren't used for epics since they're too big and abstract
 As PBIs get refined, their effort estimate gets refined too
 By the time they're sprintable, they need a relatively accurate story point

estimate
 This means that there are good estimates for sprintable stories but no

estimates for how much work the whole project will take

 What if members of the team disagree on the story points needed
for several stories?

 Agreement is needed for the sake of fairness and to plan how
much work can actually get done in a sprint

 Planning poker is a way to bring the team to consensus about the
relative difficulty of user stories

 Its goal is accuracy (ranking the stories by true difficulty) rather
than precision (getting true estimates of how long things will take)
 It's really hard to get true estimates, but it's good to know which stories

take more work

 First, the team decides what numbers to use as estimates
 The numbers are usually sequences that grow exponentially, written on cards
 Modified Fibonacci: 1, 2, 3, 5, 8 ,13, 20, 40, 100
 Powers of two: 1, 2, 4, 8, 16, 32, 64
 This means that large stories won't be estimated precisely, but that's okay

 Planning poker has rounds
 Each round estimates the effort for one PBI
 Each team member throws in one card to show her effort estimation
 If all cards match, the value is the estimate
 If they don't match, the team discusses their estimates, focusing on the highest and

lowest estimators
 Repeat the round until consensus is reached

 It usually only takes a couple of rounds to reach consensus
 Estimates are usually pretty good because of discussion

 Wednesday will be financial planning
 Work day on Friday
 Please keep working during the week!
 Deadlines on your Gantt charts are flying by
 Please come to office hours for help!

 Read Chapter 13: Financial Planning for Wednesday
 Keep working on Project 3

	COMP 3100
	Last time
	Questions?
	Project 3
	Task Identification and Effort Estimation
	Task identification and effort estimation
	Task identification and organization
	Work breakdown structure
	WBS example
	WBS heuristics
	Effort estimation in traditional processes
	Measuring size
	Lines of code
	Function points
	More on function points
	Final weights
	Other methods
	Effort estimation
	Simple models
	Exponential models
	State of the art
	Effort estimation in Scrum
	Detailed estimation in Scrum
	Planning poker
	Upcoming
	Next time…
	Reminders

